We know a lot about the scalar properties of galaxies as a function of clustocentric distance: Galaxies near cluster centers tend to be redder and older and more massive and more dense than galaxies far from cluster centers. We also know a lot about the tensor properties of galaxies as a function of clustocentric distance: Background galaxies tend to be tangentially sheared and galaxies in or near the cluster have some fairly well-studied but extremely weak alignment effects. What about vector properties?
Way back in the day, star NYU undergrad Alex Quintero (now at Scripps doing oceanography, I think) and I looked at the morphologies of galaxies as a function of clustocentric position, with the hopes of finding offsets between blue and red light (say) in the direction of the cluster center. These are generically predicted if ram-pressure stripping or any other pressure effects are acting in the cluster or infall-region environments. We developed some incredibly sensitive tests, found nothing, and failed to publish (yes I know, I know).
This is worth finishing and publishing, and I would be happy to share all our secrets. It would also be worth doing some theory or simulations or interrogating some existing simulations to see more precisely what is expected. I think you can probably rule out ram-pressure stripping as a generic influence on cluster members, although maybe the simulations would say you don't expect a thing. By the way, offsets between 21-cm and optical are even more interesting, because they are seen in some cases, and are more directly relevant to the question. However, it is a bit harder to assemble the unbiased data you need to perform a sensitive experiment.
No comments:
Post a Comment